Package index
-
dx()
- Set options for diagnostic analysis
-
dx_cm()
- Create a Confusion Matrix from Predictions and Truth
-
dx_compare()
- Compare Multiple Classification Models
-
dx_accuracy()
- Calculate Accuracy
-
dx_auc()
- Calculate Area Under the ROC Curve (AUC)
-
dx_auc_pr()
- Calculate Area Under the Precision-Recall Curve (AUC-PR)
-
dx_balanced_accuracy()
- Calculate Balanced Accuracy
-
dx_brier()
- Calculate Brier Score
-
dx_cohens_kappa()
- Calculate Cohen's Kappa
-
dx_detection_prevalence()
- Calculate Detection Prevalence
-
dx_f1()
- Calculate F1 Score with Confidence Intervals
-
dx_f2()
- Calculate F2 Score with Confidence Intervals
-
dx_fbeta()
- Calculate F-beta Score with Confidence Intervals
-
dx_fdr()
- Calculate False Discovery Rate (FDR)
-
dx_fowlkes_mallows()
- Calculate Fowlkes-Mallows Index
-
dx_g_mean()
- Calculate G-mean
-
dx_lrt_neg()
- Calculate Negative Likelihood Ratio
-
dx_lrt_pos()
- Calculate Positive Likelihood Ratio
-
dx_markedness()
- Calculate Markedness
-
dx_mcc()
- Calculate Matthews Correlation Coefficient (MCC)
-
dx_nir()
- Calculate No Information Rate (NIR)
-
dx_npv()
- Calculate Negative Predictive Value (NPV)
-
dx_npv_prevalence()
- Calculate Negative Predictive Value (NPV) at Target Prevalence
-
dx_odds_ratio()
- Calculate Odds Ratio
-
dx_ppv_prevalence()
- Calculate Positive Predictive Value (PPV) at Target Prevalence
-
dx_prevalence()
- Calculate Prevalence
-
dx_fnr()
dx_miss_rate()
- Calculate False Negative Rate (FNR)
-
dx_fpr()
dx_fall_out()
- Calculate False Positive Rate (FPR)
-
dx_informedness()
dx_youden_j()
- Calculate Informedness
-
dx_ppv()
dx_precision()
- Calculate Positive Predictive Value (PPV, Precision)
-
dx_sensitivity()
dx_recall()
dx_tpr()
- Calculate Sensitivity (True Positive Rate, Recall)
-
dx_specificity()
dx_tnr()
- Calculate Specificity (True Negative Rate)
-
breslow_day_test()
- Breslow-Day Test for Homogeneity of Odds Ratios
-
dx_chi_square()
- Chi-Square Test for Independence in a 2x2 Table
-
dx_delong()
- DeLong's Test for Comparing Two ROC Curves
-
dx_fishers_exact()
- Fisher's Exact Test for Independence in a 2x2 Table
-
dx_g_test()
- G-Test (Log-Likelihood Ratio Test) for Independence in 2x2 Table
-
dx_mcnemars()
- McNemar's Chi-squared Test for Paired Proportions
-
dx_z_test()
- Z-test for Comparing Two Proportions
-
dx_plot_calibration()
- Plot Calibration Curve
-
dx_plot_cap()
- Plot Cumulative Accuracy Profile (CAP) Curve
-
dx_plot_cm()
- Plot Confusion Matrix with Metrics
-
dx_plot_cost()
- Plot Cost Curve
-
dx_plot_decision_curve()
- Plot Decision Curve
-
dx_plot_forest()
- Create table with odds ratios displayed graphically
-
dx_plot_gain()
- Plot Gain Chart
-
dx_plot_ks()
- Plot Kolmogorov-Smirnov Curve
-
dx_plot_lift()
- Plot Lift Curve
-
dx_plot_pr()
- Plot Precision-Recall Curve
-
dx_plot_predictive_value()
- Plot Predictive Values Against Prevalence
-
dx_plot_probabilities()
- Plot Predicted Probabilities
-
dx_plot_roc()
- Plot ROC Curve
-
dx_plot_rocs()
- Plot ROC Curves for Multiple Models
-
dx_plot_thresholds()
- Plot Diagnostic Measures across Thresholds
-
dx_plot_youden_j()
- Plot Youden's J Index Curve
-
dx_edit_cell()
- Edit a cell within an object returned from dx_forest
-
as.data.frame(<dx>)
- Convert to a data frame
-
summary(<dx>)
- Summary
-
dx_heart_failure
- Heart attack outcomes and predictions