
Package index
-
dx() - Set options for diagnostic analysis
-
dx_cm() - Create a Confusion Matrix from Predictions and Truth
-
dx_compare() - Compare Multiple Classification Models
-
dx_accuracy() - Calculate Accuracy
-
dx_auc() - Calculate Area Under the ROC Curve (AUC)
-
dx_auc_pr() - Calculate Area Under the Precision-Recall Curve (AUC-PR)
-
dx_balanced_accuracy() - Calculate Balanced Accuracy
-
dx_brier() - Calculate Brier Score
-
dx_cohens_kappa() - Calculate Cohen's Kappa
-
dx_detection_prevalence() - Calculate Detection Prevalence
-
dx_f1() - Calculate F1 Score with Confidence Intervals
-
dx_f2() - Calculate F2 Score with Confidence Intervals
-
dx_fbeta() - Calculate F-beta Score with Confidence Intervals
-
dx_fdr() - Calculate False Discovery Rate (FDR)
-
dx_fowlkes_mallows() - Calculate Fowlkes-Mallows Index
-
dx_g_mean() - Calculate G-mean
-
dx_lrt_neg() - Calculate Negative Likelihood Ratio
-
dx_lrt_pos() - Calculate Positive Likelihood Ratio
-
dx_markedness() - Calculate Markedness
-
dx_mcc() - Calculate Matthews Correlation Coefficient (MCC)
-
dx_nir() - Calculate No Information Rate (NIR)
-
dx_npv() - Calculate Negative Predictive Value (NPV)
-
dx_npv_prevalence() - Calculate Negative Predictive Value (NPV) at Target Prevalence
-
dx_odds_ratio() - Calculate Odds Ratio
-
dx_ppv_prevalence() - Calculate Positive Predictive Value (PPV) at Target Prevalence
-
dx_prevalence() - Calculate Prevalence
-
dx_fnr()dx_miss_rate() - Calculate False Negative Rate (FNR)
-
dx_fpr()dx_fall_out() - Calculate False Positive Rate (FPR)
-
dx_informedness()dx_youden_j() - Calculate Informedness
-
dx_ppv()dx_precision() - Calculate Positive Predictive Value (PPV, Precision)
-
dx_sensitivity()dx_recall()dx_tpr() - Calculate Sensitivity (True Positive Rate, Recall)
-
dx_specificity()dx_tnr() - Calculate Specificity (True Negative Rate)
-
breslow_day_test() - Breslow-Day Test for Homogeneity of Odds Ratios
-
dx_chi_square() - Chi-Square Test for Independence in a 2x2 Table
-
dx_delong() - DeLong's Test for Comparing Two ROC Curves
-
dx_fishers_exact() - Fisher's Exact Test for Independence in a 2x2 Table
-
dx_g_test() - G-Test (Log-Likelihood Ratio Test) for Independence in 2x2 Table
-
dx_mcnemars() - McNemar's Chi-squared Test for Paired Proportions
-
dx_z_test() - Z-test for Comparing Two Proportions
-
dx_plot_calibration() - Plot Calibration Curve
-
dx_plot_cap() - Plot Cumulative Accuracy Profile (CAP) Curve
-
dx_plot_cm() - Plot Confusion Matrix with Metrics
-
dx_plot_cost() - Plot Cost Curve
-
dx_plot_decision_curve() - Plot Decision Curve
-
dx_plot_forest() - Create table with odds ratios displayed graphically
-
dx_plot_gain() - Plot Gain Chart
-
dx_plot_ks() - Plot Kolmogorov-Smirnov Curve
-
dx_plot_lift() - Plot Lift Curve
-
dx_plot_pr() - Plot Precision-Recall Curve
-
dx_plot_predictive_value() - Plot Predictive Values Against Prevalence
-
dx_plot_probabilities() - Plot Predicted Probabilities
-
dx_plot_roc() - Plot ROC Curve
-
dx_plot_rocs() - Plot ROC Curves for Multiple Models
-
dx_plot_thresholds() - Plot Diagnostic Measures across Thresholds
-
dx_plot_youden_j() - Plot Youden's J Index Curve
-
dx_edit_cell() - Edit a cell within an object returned from dx_forest
-
as.data.frame(<dx>) - Convert to a data frame
-
summary(<dx>) - Summary
-
dx_heart_failure - Heart attack outcomes and predictions